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ABSTRACT

The stress and strain behavior at notch tips is analyzed with

the view of using local values for fatigue calculations. A

perfectly plastic, closed form solution is used as a starting

point and basis of comparison for the finite element analysis.

Maximum stress and strain values for 7075-T6 aluminum were

obtained via finite elements and reflection photoelasticity in

the plastic zone, and residual stress and strain values after

unloading were obtained as well. A uniaxial model was used

successfully to predict most of the behavior observed.
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A STUDY OF NOTCH FATIGUE

PART III: PLASTIC STRESS ANALYSIS OF NOTCHES

INTRODUCTI ON

As aircraft maneuver through a varied and complicated load

history, critical points at sites of stress concentration are

locally loaded into the plastic range. This is a good protec-

tion factor for the structure, for the yielding provides a large

load bearing capability fz'r loads beyond the limit load. However,

yielding at the fatigue critical points also greatly influences

the fatigue life of the part, and calculations of fatigue must

include these'effects in order to be accurate.

RESIDUAL STRESS

After 'a load cycle is applied which takes the ligaments at

the notch tip into the yield zone, those ligaments have a perma-

nent set, which makes them longer than their original length.

During the unloading portion of the cycle, the surrounding un-

yielded material attempts to push the elongated ligaments back

to their original length and a position of equilibrium is attained

with the ligaments in compression; thus, a compressive residual

stress is produced in the ligaments. The ligaments are still

longer than they were in the unyielded state and the notch tip

region possesses a zone of compressive residual stress but posi-

tive residual strain. Both of these must be accounted for in

a cycle by cycle summation of damage for fatigue life monitoring.

STRESS CONCENTRATION FACTOR

Tensile yielding at the notch tip causes a reduction in

the stress concentration factor. Thinking of the ligament at



the notch tip as a miniature uniaxial tensile specimen, as

the stress-strain curve for the ligament bends over with yield-

ing, the ratio of far-field stress to the local plastic stress

produced is larger than for the elastic condition and this rela-

tionship reduces the SCF. This change in SCF can have signi-

ficant effect on fatigue life predictions for those cycles

applied after a cycle which causes yielding.

PHOTOELASTIC RAMIFICATIONS

After yielding occurs in the specimen material, stresses

and strains in the coating material undergo a shift relative to

one another because the coating strains are constrained to be

the same as the yielded metal so that the classical relation-

ships for stress in terms of fringe number no longer hold. In

this report strains are obtained photoelastically, and the

stresses are calculated using plastic stress-strain laws. The

coating, however, acts as a permanent repository of the residual

strain for whatever loading may follow. To obtain the stresses,

a model must be formulated, which gives the new stress-strain

relation, where the zero stress point doesn't coincide any longer

with the zero strain point but the two have been shifted apart.

All three of these phenomena will be explored in detail in

this report with supporting experimental data to quantify the

behavior.

PLANE STRESS SLIPLINE THEORY

To begin exploration into the nonlinear domain, some ana-

lytical methods were first searched for, and the only candidate

seemed to be slipline theory. The material model is highly
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-lealized, but with photoelasticity and FEA, it is possible

to assess its usefulness. It is an elegant theory, and it

proved very useful in checking out the nonlinear portion of the

ADINA Program. The development here follows that given by

Kachnov (I)

GOVERNING EQUATIONS

In the plastic region, slipline theory assumes that the

stress state is on the original yield surface, or in other words,

that the material is perfectly plastic. Using the Von Mises

yield criterion, this requires that

where k = yield limit in pure shear. The uniaxial yield stress

is y. A parametric form of this equation was

developed by Sokolovskii,

G: Ckoto (W-j) Z~ kC.O&AIWt) (2)

which satisfies (i) identically for all values of w

The parametric function w (x,y) is related to the mean pressure,

which is given by

+ -,+ s (3)

Substituting Equation (2) into Equation (3) and setting =

for plane stress, we find

(4)

3



To obtain the expression for equilibrium equations in terms

of , the transformation equations are first used

6, "L ( t4O-t) t( L o (5a)

i vk z(5c)

where 0 is the angle between the first principal direction and

the x axis.

Substituting Equations (2) into (5),

GILZf jis o sA W + W .(20] (6a)

Cy: = [ C~~ tcP5c-05U CD1 (6b)

(6c)

Substituting the stress components into the differential equations

of equilibrium simplified to plane stress, we obtain a system of

two equations for the two unknown functions w(x,y) and O(x,y)

After some rearrangement to simplify later operations, the two

equations become

(0- X, (7a)
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METHOD OF CHARACTERISTICS

Seeking a solution by the method of characteristics, we

suppose that along some line in the structure given by x = x(s)

and y = y(s) , the functions w = w(s) and = 4(s) are

given. Then along that line

Z # Ax ' 9 Ali 8a)

S as (8b)

Equations (7) and (8) possess characteristics whose defining

differential equations are found by setting the determinant of

the coefficients to zero. Reducing the determina%.t we obtain

i t(9)

In order for the characteristics to be real, the discri-

minant must be positive semi definite,

-4t (10)

or

Therefore, because of the nature of the cosine function, the

region of hyperbolic characteristics lies between the limits

W r 4 T . From Equation (10)

-- 7..(11)

and from Equation (4) we see that this physically corresponds to

LT1



which means that the mean pressure must be less than the

maximum shear stress in order to have a region where the

equations are hyperbolic and characteristics exist.

In the application of Kramer's Rule to solve the set of

simultaneous equations for dx, a numerator determinant is formed.
ds

Setting this determinant to zero gives the condition along one

set of characteristics, which reduces to

+ =CA4A.(13)

where

Ci1  (14)

Along the other set of characteristics, obtained by setting

the determinant for 4 - 0 , we findds

ft - -)A.% (15)

CIRCULAR BOUNDARIES

Consider a portion of a circular boundary as shown in

Figure 1.

chracteristic

FIGURE 1 SCHMMATIC OF CHARACTERISTICS
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Stress conditions at point P will only be influenced by condi-

tions along the portion of the boundary between A and B, and

if the boundary changes contour outside of AB it will not affect

the stresses at P. More specifically, the stresses at P for a

notch and for an axisymmetric hole would be the same, so long

as all of the material between A and B were yielded and the

boundary is stress free. At r = a all along the yielded

boundary, rr9 = 0 and a = 0 By the Von Mises yield con-

dition in Equation (1), 6= the mean pressure is

and the maximum shear stress is 1 .aa ! k ; thus,
A) 2-

the condition is satisfied for characteristics. From Equation

(4) w = I at the boundary r - a

From Equation (2) the normal stresses in the yielded region

are given by

fr: CA (16a)

c:4=z~k o~i~-~)(16b)

STRESS DISTRIBUTIONS

To relate w to r , the axisymmetric form of the equilibrium

equations is used.

Y .(17)

Substituting Equations (16) into (17) and simplifying, a relation

between a and r is obtained.

S 7



Integrating,

(19)

where C is a constant of integration.

As shown before, on the boundary at r = a , e = Using

this point to evaluate C

4ZL e (20)

and -

r5. (21)

Characteristics will extend out into the body to w = ,which

corresponds to r = 2.07a . Within that region this solution

will apply to the notch.

Equation (21) has been evaluated for the notch in Figure 2

given by r = 1.8125 in. and d = 2.875 in. out to a distance

of r = 3.75 in., which corresponds to the limit of applicability

of the solution. The results are listed in Table I.

The domain of applicability of the solution is defined by

the free boundary at the edge of the notch and the two char-

acteristics given by Equations (13) and (15). Since the solu-"

tion for the notch coincides with the axisymmetric solution in

this range, or and a e are principal stresses and * = .

Thus,

~. (22)

8



LARGE SPECIMEN GEOMETRIES

r

K
Nominal KT  2.6 3.8

964 r (in) 1,8125 0.625

d (in) 2.875 3.938

Reduced
Cross-secton

(Ing) 1.42 in 2  1.25in2

7075-T6 Aluminum
Thickness 0.080 In

FIGURE 2. NOTCH GEOMETRY= 2 3.5"---'



TABLE I

NOTCH STRESS DISTRIBUTION BY SLIPLINE THEORY

r r/a r/VI- IV/R

1.8125 1.0000 ?/3 = 1.047 0.0000 1.0000

2.1645 1.1942 ir/3.49 = .900 0.1689 1.0740

2.4698 1.3626 w/3. 93 = .799 0.2832 1.1113

2.8381 1.5658 /4.49 .700 0.3925 1.1369

3.3057 1.8238 ?r/5. 24  .600 0.4989 1.1514

3.7506 2.0690 i/6 .524 0.5774 1.1547

I
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At the outer extremity of the zone, where -T/6 and

r = 3.7506 , the characteristics intersect and coincide. From

the definition of a given in Equation (14), it is zero at

w= r/6 for all 9 .Concerning ourselves with the point P

in Figure 1, which corresponds to the symmetry line of the

notch where 9 - 0 , Equation (22) yields the value of the

constant as zero. We therefore are looking for the character-

istics defined by

j tQ 09 (23)

Evaluating Q from Equation (14) by Simpson's rule at all of

the r values in Table I, and obtaining the corresponding e

coordinates from Equation (23), the trajectory of the character-

istics can be found. They have been tabulated in Table II.

A plot of these contours has been made on the tip of the

notch in Figure 3. This is not a drawing of the plastic zone,

but is the boundary of applicability of the slipline solution.

This slipline method provides about the only analytical

means of handling the nonlinear, plastic flow at a notch tip.

Although it is limited to rigid, perfectly plastic material

models and the extent of yielding is unknown; it does constitute

valid check on the PEA and later these results will be compared *
to those attained for more realistic material models.

COMPARISON WITH PEA

The finite element grid used for the elastic analysis re-

ported in Part 11 (2) was employed with ADI7A's bilinear material

model such that it represented a rigid perfectly plastic mate-

rial. A Young's Modulus of 10 26psi was used to model perfect



TABLE I I

COORDINATES OF BOUNDING CHARACTERISTICS

r w a9

1.8125 1.047 + 24.1 0

2.1645 0.900 + 1.

2.4698 0.799 + 12.7 0

2.8381 0.700 + 8.10

3.3057 0.600 +3.0

3.7506 0.524 0 0

12
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rigidity, and the strain hardening modulus, Et , was set equal

to zero. Poisson's ratio was entered as 0.4999999, which is as

close to incompressibility as the program would allow.

Figure 4 illustrates the FEA results obtained and compares

them to the slipline solution. The stress values are normalized

to the yield stress. Very good correlation was obtained for the

a8 distribution but the ar values vary somewhat. This seems

to be par for this problem in that it seems no matter what method

is used to find the stresses, the greater variation is always in

a r The comparison-: are viewed, however, as substantiations of

one another and constitute a baseline to which other analyses

can be referenced.

The growth of the plastic zone, which is not obtainable in

the slipline theory, is given by FEA in Figures 5 to 7.

We now explore a more realistic material model with FEA and

with photoelasticity. In order to do that, it is necessary to

develop a nonlinear stress-strain law.

PLASTIC STRESS-STRAIN RELATIONSHIP

When the proportional limit is exceeded at the notcb tip,

stresses can no longer be computed directly from the chbtoelastic

fringe data. A plastic stress-strain relationship must be used to

calculate stresses from measured strain values. From Druckers's

Postulate (3 ) it has been shown that the plastic strain increment is

normal to the yield function in stress ; i.e.

AX (24)

14
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FIGURE 5

RIGID-PERFECTLY-PLASTIC INITIAL PLASTIC ZONE
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Plastic Zone

FIGURE 6

RIGID-PERFECTLY-PLASTIC INTERMEDIATE PLASTIC ZONE
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Plastc Zon

FIGURE 7

RIGID-PERFECTLY-PLASTIC FINAL PLASTIC ZONE
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where deijP = Plastic strain increment

f(oij)= 0 describes the yield function

d?- An undetermined function of stress, strain and

history of loading.

The Von Mises, or distortional energy, yield criterion is

good for aluminum. In terms of principal stress invariants,

yielding occurs when J2 reaches a given value.

JL: r'( . 6)+ ( aCO~tG& (25)

where J2 = Second deviatoric stress invariant

ai = Principal Stresses

The f is defined as

-- -Co (26)

Differentiating as indicated in Equation (24).

S- 1 ((01 ti.)14 % (27a)

j~t (27c)

To determine dX an equivalent uniaxial stress, a , is

defined to represent the behavior of a triaxial stress state

with a single component.

19
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such that in uniaxial tension,

I:(6SO1,1 ) = ,(29)

and at yield when f = 0

G (30)

when f = 0 , 1 = Const , so it is convenient to let

T (31)

The simplest function is customarily selected.

- i: AJJ (32)

where the square root is chosen to make the expression dimension-

ally correct. For uniaxial tension,

(T. ,0' z(33)

To satisfy the condition of Equation (29),

A =

and the equivalent stress becomes

2(34)

20



A generalized plastic strain increment function is defined

such that the product of the two is work.

After considerable manipulation,

[(36)

Inserting Equations (27) into Equation (36) and simplifying with

Equation (34), it can be shown that

S(37)

So that the stress-strain law now becomes

(T8) t(38a)

+ (38b)

(38c)

Simplifying Equation (38a) to uniaxial tension,
* p :*

because a = a, ; thus, upon integration , el , since

C =0 when e = 2 = 3P = 0. This leads to a relationship

between a and e

It is postulated that if in uniaxial tension, for loading

F i.'~ (39)j

21
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then a reasonable generalization is

t. =. P(40)

For instance, using the Ramburg-Osgood expression for uniaxial

tensile behavior,

~i (41)

then it is proposed that

09 
(42)

and

~(43)

The stress-strain expression now has the form

For the notch specimens the loading was proportional; i.e.

E2__c Z". (45)

Under these conditions the plastic strain becomes

~ (46)

where y = Const 1 1 - 1/2(aI1 + a2 ) •

22



Also generalized stress from Equation (34) becomes,

where 5 - Const =+

Equation (46) then simplifies to

A, ~(48)

This is now integrable, and eIp  can be found explicitely.

06? Y )(49)

The integration constant is zero from Equation (41).

Eliminating y and 6 using Equations (46) and (47):the plastic

strain can be expressed in terms of stresses.

~- L tQ~2+~'4 (~ 4  flI(50)

The elastic and plastic parts of the strain are assumed additive

+ (51)

and the total strain becomes

23
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For plane stress, 3 = 0 , and both of the other components can

be obtained by permutation.

+ (53c)

This stress-strain law will be used to find stresses from

photoelastic strain data, and all other analysis of the plastic

zone around the notch except for the work done with the rigid -

perfectly plastic model, which was used for the slip-line theory.

Since the strains in the coating are constrained to be the same

as the specimen, the equations relating strains and fringe will

remain valid into the plastic domain. With e1 and c2 deter-

mined from the photoelastic data, a program for the solution of

simultaneous, nonlinear, algebraic equations was used to solve

Equations (53a) and (53b) for a1 and a2 With aI and a2

£3 could be found from Equation (53c) if desired.

PLASTIC MEASUREMENTS AT THE NOTCH

The shallow notch specimen shown in Figure 2 was fabricated

from 7075-T6 and loaded into the plastic range. Normal and

oblique incidence fringes were recorded in 1/16" increments on

the line of symmetry extending from the notch tip beginning at

24



1/8 inches and extending to 1/2 inches. Five different readings

were taken at each location while the specimen was under 70,000

lbs. of load. The readings, along with the mean and the standard

deviation, are recorded in Table III and Table IV.

with five samples taken, data falling outside of an expected

value of 1/2n , or 1/10, were rejected. For a normal distribu-

tion this is 4-1.645a from the mean. The data were examined

for this tolerance and one oblique reading at x = .1875 in. fell

outside the limits and was discarded. A new average was computed

at this location of 7.71.

EXTRAPOLAT ION

A linear regression ignoring the sign was run for both sets

of data using log (log N) vs. x as the function that is nearly

linear. Results of the regression for normal incidence gave

log (log N) = .03627 -. 2594x (54)

with R = .9997. At the edge of the hole, x -0 , N =-12.22.

(The negative sign was again affixed after the value was found.

For oblique incidence,

log (log N) .01588 -. 3566x (55)

with R = .9984. At the edge of the hole ,No 10.895.

L POISSON'S RATIO MISMATCH

This extrapolation was made from a region of the sheet

where the Poisson's Ratio of the metal is 0.5 due to yielding.

From Lindsey (4 ) the effective Poisson's Ratio in the coating

material is given by

25



TABLE III FRINGE VALUES

SHALLOW NOTCH TEST -NORMAL INCIDENCE -PLASTIC LOAD

x 1 2 3 4 5AUG S. D.

.5000 - 6.36 -6.39 -6.40 - 6.42 - 6.39 - 6.392 .0217

.4375 - 6.83 -6.83 -6.85 - 6.87 - 6.84 - 6.844 .0167

.3750 - 7.44 -7.44 -7.41 - 7.41 - 7.42 - 7.424 .0152

.3125 - 7.98 -7.99 - 8.03 - 8.08 - 8.06 - 8.028 .0432

.2500 - 8.65 - 8.64 - 8.65 - 8.67 - 8.67 - 8.656 .0134

.1875 - 9.29 - 9.33 - 9.38 - 9.37 - 9.35 - 9.344 .0358

.1250 - 10.11 - 10.20 - 10.19 - 10.16 - 10.23 - 10.177 .0455

TABLE IV FRINGE VALUES

SHALLOW NOTCH TEST -OBLIQUE INCIDENCE - PLASTIC LOAD

x 1 2 3 4 5 AUG S.D.

.500 - 4.79 - 4.79 -4.79 - 4.79 - 4.79 - 4.790 0

.4375 - 5.41 - 5.39 -5.36 - 5.32 - 5.32 - 5.360 .0406

.3750 - 5.85 - 5.85 -5.84 - 5.84 - 5.86 - 5.848 .0084

.3125 - 6.41 - 6.40 -6.41 - 6.40 - 6.37 - 6.398 .0164 I

.2500 - 7.06 - 6.97 -7.03 - 6.89 - 6.97 - 6.984 .0654

.1875 - 7.79 - 7.70 -7.71 - 7.73 - 7.70 - 7.726 .0378

.1250 - 0.62 - 8.57 -8.55 - 8.58 - 8.58 - 8.58 .0255

26



.4T97-.IZO[TcO;h Si)
.99Z3 -. 0458 o:K-'I. (56)

[Cosk (Sir)

Where x* is measured from an interior point far from the edge of

the coating. To relate it to x which is measured inward from the

notch edge, let x* = 10 hc - x. For photoelastic measurements at

points where xa .1250 in, Poisson's Ratio is essentially constant.

The coating being used was hc = .0382 ;thus x = .1250 corresponds

to x - 3 .2 72 3hc and x* = 6o7 27 7hc . Substituting this value into

(56) gives v - .4828.

However when extrapolating back to x = 0 , the extrapolation is

from data for which the value of ; is .4828 but the actual value

there from (56) is .3793. Lindsey (4 ) worked out the correction

for the extrapolation:[NJ (57)
N " I +.46Z9,J.1 , 5 :(+ 5 [3:.45z8 (57)

The same correction applies to the oblique incidence fringes;

therefore, the fringe value at the edge of the notch is

N (.9 oZ)(- I ): -z. .'57 N*:(.93o(-o.9zO-) -13 (58)

REINFORCEMENT

A slight reinforcement of the thin metal sheet by the coat-

ing material is present, and this small correction factor was

developed in Part I.

%[ hoEco , _t2," z + I, (, ticJ (59)

27



In the elastic domain, the factor was 1.0162, but in the plastic

domain it is 1.0182. This correction only need be made if com-

parisons are being made with calculations or measurements being

made on an uncoated part, and this will be the case when

comparisons are made later with finite element solutions. The

finally corrected values of the fringes are given in Table V.

STRAINS

The strain expressions reflecting the calibrated parameters

of the polariscope in the Aeronautical Engineering laboratory at

NPS are(
4 )

e.4O= 3 ~j-7(Ii). (60a)

£ H= - .. o*- (i-%5)N 01  (60b)

where ex - y = FE N and Lx may or may not be the larger

principal strain. At the edge of the hole where 5 = .3793

4 -I 1.5798,I0 N 4. 2.4Z94910'Nq (61a)

U - -1( - 4.gI ;XIQ" N 4- 2.429(,X IO"S N o6
(61lb)

At the next station and all remaining stations, xt 0.1250in.,

Poisson's Ratio is 0.4828 and the strain expressions are given by

U _ -4.OZ I tO"?N + I.82)(' NO
(62a)

lk 2.7901I 4 Uow + j.8b,3ZX1e0 N*
(62b)
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TABLE V CORRECTED FRINGE VALUES

x N N

0 0000 - 11.58 - 10.31

.1250 - 10.36 - 8.74

.1875 - 9.51 - 7.85

.2500 - 8.81 - 7.11

.3125 - 8.17 - 6.51

.3750 - 7.56 - 5.95

.4375 - 6.97 - 5.46 :

.5000 -6.51 -4.88
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Using the fringe values of Table V in Equations (61) and (62),

the strain distribution is obtained in Table VI.

SRES SES

The nonlinear cons titutive relations developed in Equations

(53a) and 53b) were used to find stresses. Since the equations

cannot be solved explicitly for stress, a computer program was

used to solve the nonlinear set of equations simultaneously.

Results in the form of a stress distribution are given in

Table VII, where the following values of the parameters were

(2)used as given by Lindsey in Part II.

E -10.12 x 10 6psi

V=0.5

0 1.479 x 10 4

n -21.58

The cy value at x - 0 should be zero of course; however

it is less than i.% of the other stress component and represents

a small experimental error. To continue the investigation of

the plastic region at the notch, a finite element analysis was

conducted to be used in conjunction with the photoelastic results.

FINITE ELEMENT ANALYSIS

The ADINA Program was used as described in Part II. The

grids for the notch are shown in Figures 8 and 9. The analysis

for loading into the plastic region of the 7075-T6 aluminum was

made using a bilinear material model mentioned earlier. The

values required by ADINA were determined graphically from experi-

mental data shown in Figure 10 and the bilinear fit is also
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TABLE VI PLASTIC STRAIN DISTRIBUTION

x c xx 10 e x 10

0.0 - 6.7551 1.3672

0.1250 - 5.8288 1.2446

0.1875 - 5.0249 1.1751

0.2500 - 4.3496 1.1191

0.3125 - 3.8764 1.0535

0.3750 - 3.4477 .9888

0.4375 - 3.1304 .9165

0.5000 - 2.5101 .8974
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TABLE VII STRESS DISTRIBUTION

x a x (psi) a y(psi)

0 629 79,945

.1250 3,327 80,441

.1875 7,533 81,813

.2500 11,466 82,975

.3125 13,447 83,102

.3750 15,214 83,012

.4375 15,696 82,145

.5000 21,474 83,847
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FIGURE 8 COURSE MESH FOR SHALLOW NOTCH

11. 75"

60 ELEMENTS

(ISOPARAMETRIC)

219 NODES i

404 DEGREES OF

FREEDOM - -4---

II !
45"1!

1. 8125" Radius

SYMOITm
AXES

8.875"1 - 2. 875"

33



FIGURE 9 FINE MESH FOR SHALLoW NOTCH
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FIGURE 10
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shown. The loads used in the program were selected to match

the experiments.

The results of FEA for a local yield producing load of

70,000 lbs are presented along with the experimental results in

Figure 11. The a e results compare well, matching in both

magnitude and trend with the experimental data. In all cases

the FEA determined the peak ae0 stress to occur near the yield

boundary, and the gradient of the a r stress to fall off dra-

matically in the plastic zone. This characteristic behavior of

the a e stress was reported by other investigators [References

5 and 6] using FEA on 2024-T3 aluminum. Plane elastic-plastic

stress distributions reported by F'rocht [Reference 7] show

similar trends. The experimental data also shows a marked change

in the gradient of a estress within the plastic region. The

growth of this plastic region is approximated by using the FEA

results for this notch loaded at 60,000, 65,000 and 70,000 lbs.

These results are shown in Figures 12 through 14. Experimental

data for the astress distribution matches the FEA results

reasonably close.

The compatibility of the data is satisfying because the

finite element mesh cannot be made too fine without becoming

unwieldly, while the photoelastic data is continuous. Also

because of the averaging techniques used to extrapolate the

finite element results, the stress values in regions of high

gradients are suspect. On the other hand, the finite element

36



FIGURE 11
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FIGURE 12

SHALLOW NOTCH 60,000 LB LOAD PLASTIC ZONE

38



FIGURE 13

SHALLOW NOTCH 65,000 LB LOAD PLASTIC ZONE
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| q . - I I1 m - oIL................ ..

FIGURE 14

SHALLOW NOTCH 70,000 LB LOAD PLASTIC ZONE
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solution is readily obtained over the whole elastic-plastic

region and that would be very laborious using photoelascity

by running them both, reliable results seem to be reasonably

certain.

4I
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STRESS AND STRAIN CONCENTRATION FACTORS

Turning attention to the notch boundary only, a develop-

ment is made whereby the local h~oop stress can be calculated.

In the elastic range, stress and hoop stress can be calculated.

values to nominal values are constant and equal.

K =K K
a T

In this definition the stress concentration factor was defined as

local stress over smallest cross-section stress. In the yielded

domain, these elastic relationships change, K and K are

no longer equal and their values depend upon the amount of

plastic yielding that takes place at the notch-tip.

LOADING INTO THE PLASTIC RANGE

To show these relationships, Figure 15a has been constructed.

It is for a most general case showing local conditions versus

far-field conditions of both stress and strain. The stress-

strain curve which corresponds to the loading cycle in Figure

15a is shown in Figure 15b with all corresponding points labeled

the same.

Loading begins at 1 with yielding occurring at 2; so from

1 to 2,

6 i.T (63)

~ (64)

Loading continues to point 4 where unloading begins and the

cycle is completed at point 5, where there is positive residual

strain and negative residual stress.
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EE~ Diagram

Ee 4  $4 S

0~ 9 S

2~

k,4

E 
e__________

I 64

Fig. 15b Stress - Strain Diagrams
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UNLOADING

During unloading, and for subsequent loading cycles up to

yield, the stress concentration factor is elastic and constant,

but different from the original KT. This is shown in Figure 15a.

KT54 (65)

Since ke -T+
/

r Ix(66)

During the same portion of the cycle the unloading strain concen-

tration factor from Figure 15a is

S 4- 
(67)

Since f : 64/e. and 5,4 E et

K S 4 (68)

From Figure 15b,

(69)

Solving for a R and inserting it into Equation (65)

- ! (70)
54
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Simplifying by summing the first two terms to zero and using

the elastic relation S4 = e 4'

S4  (71)

Comparing equation (71) with equation (68)

I I

K,. =k
(72)

This result for the uniaxial model has some rather far-reaching

implications. One of them is that the strain concentration factor

is the same as the elastic stress concentration factor even into

the plastic ,-omain. This is shown by returning to equation (71).

From Figure 15a for parallel unloading curves of stress and strain,

Et 4 -4

(73)

Solving for Ez R and inserting it into (71)

/

T4 
(74)

Since Ee4 = KT and a4 " aR K T1' equation (74) reduces to

s 4  S4

z V, I<T (75)

which establishes Ke in the plastic region to be a constant.

This is a very important result which can be checked experimentally.

Inserting expressions of stress and strain into (75)

e 4  E56. 5 
(76)
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Since j3 is an elastic value and related to e3 through Young's

modulus, we may conclude

(77)

This simplification, with the others already noted reduces

Figure 15 to that appearing in Figure 16. In the second appli-

cation of load, K = KT' and K = KT' until the previous

highest stress and strain values are exceeded.

RELATING LOCAL STRESS TO FAR-FIELD STRESS

After yielding has taken place, we desire to relate K to

KT so that local stresses can be readily found at the notch from

a knowledge of the loading and KT * From the uniaxial stress-

strain expression, which governs the ligament at the tip of the

notch,

e~-j~+A(~ ~(78)

We have shown that

& = K~ = K ~(79)

Putting Equation (78) into Equation (79), KT can be related to

the local stress at the notch-tip.

Ee Ee (80)

In the plastic domain,

5 Ee K¢- (1
(81)

46



Equation (86) can be written in terms of stress concentration

factors to show the relationship after yielding.

K 4 = Ka- 4 (82)

This is a competitor to Neuber's Relation, which has been used

by many to calculate local stresses at notches that are yielded.

A comparison of the accuracy of this equation compared with

Neuber's relation will be made later.

RESIDUAL STRESS

For each point along the loading curve in the plastic

range, if unloading occurred at that point

K- $
(83)

which relates the modified elastic SCF to the plastic one.

From Equation (65),

K~l

S (84)

This SCF will be valid until the next load cycle that will cause

additional yielding is applied.

As the unloading continues, an unloaded equilibrium point

will be reached with a positive residual 3train and a negative

residual stress. The value of the coordinates in stress-strain

space where this will 6c-ur cannot be calculated with this model.

If the residual strain is measured photoelastically, the residual

stress can be calculated from Equation (65). The new stress

concentration factor can be checked photoelastically. All of

this has been done.
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CHECK OF THE THEORY

A 70,000 lb. load was applied to the notched specimen of

Figure 2, which has a nominal cross-sectional area of 1.42 in
2

The nominal stress is S = 49,296 psi, and the nominal strain

is e = 4.8711 x 10- 3 in/in (E = 10.12 x 106 psi). By a pre-

vious development it was shown that even for strains into the

plastic range, which this loading does produce for the material

at the notch tip, the strain concentration factor does not

change.

E = KT e = (2.73) (4,8711 x 10- ) = .0133 in/in

Normal incidence photoelastic measurements at the notch

made by Stenstrom (8) are recorded in Table VII. Extrapolating

to zero as described in Part I gives a compensator reading of

Cn = 545.2, or a fringe value of 11.6. Reinforcement effects

of the coating amount to a factor of 1.0182 when the material

is yielded, and the Poisson's Ratio mismatch produces a factor

of .9195. The actual fringe value is the product of the three,

or 10.86. From the photoelastic fringe equation.

i- 2 = (1796 x 10- 6) (10.86) = 0.01950 in/in

At the notch tip we are assuming a uniaxial stress which require3

that e2 = - ve1 where .' = 0.5 ; thus

= 0.0130 in/in
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TABLE VII STENSTROM DATA

PLASTIC REGION LOADING

KT = 2.6 Notch, 70,000 lb. Load

Corrected C 12 oI  2
Data Pt.31 2

In. C n 9 10- 3 in/in 10- 3in/in psi psi

0.0 571.0 678.0 16.182 -5.244 163866 800

0.125 464.4 545.8 13.410 -4.014 137050 4426

0.250 393.9 472.4 11.960 -2.819 125057 12570

0.375 339.7 410.1 10.480 -2.264 110367 13360

0.500 294.5 361.8 9.476 -1.576 101522 1.7420

0.625 253.3 314.6 8.362 -1.143 90502 18160

0.750 219.1 281.4 7.807 -0.415 86927 24360

0.875 193.0 250.3 7.027 -0.215 78828 23710

1.000 170.9 225.3 6.436 0.024 73027 24220

RESIDUAL COMPRESSION

0.0 178.0 211.0 -5.025 1.654 -50791 43

0.1215 158.8 185.8 -4.535 1.424 -46086 -736

0.250 139.7 163.7 -4.004 1.238 -40774 -878

0.375 11,7.6 138.1 -3.389 1.023 -34600 -1016

0.500 100.5 118.5 -2.926 0.845 -30017 -1316

0.625 81.4 96.5 -2.402 0.652 -24798 -1551
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This is a favorable comparison confirming the uniaxial model

and the development of the constancy of the strain concentra-

tion factor. The error is 2.25%.

The maximum stress is calculated from

- 1.79 x _(I )

Obtaining the value numerically, the maximum stress is 79,403

psi. The small error in strain is insignificant when stresses

are calculated. This could have been calculated directly from

the loading by using Equation (78).

The residual strain was measured after a mdximum load of

71,000 lb. had been applied. Extrapolation to the notch tip

gave NR = 2.91, which determines the residual strain at

3.48 x 10- 3 in/in. The associated residual stress is obtained

from the model by Figure 15b

R= E(R - Ro)

where eRo = 
4 - 4

For this load e = 0.0135 and a = 79,529 psi,

These values give e Ro = 5.6414 x 10- 3 in/in, and a= -21,873 psi.

From Equation (65) the new SCF for the next loading cycle

is K 1 = 2.03. An elastic reloading was made with photoelastic

measurements taken at the notch to evaluate the new KT1  A

20,000 lb. load was applied which gave a local strain reading of
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6.368 x 10- in/in, which produced a strain rise from the resi-

dual value of 2.883 x 10- in/in and an associated stress rise

of 29,228 psi. The nominal stress was 20,000 lb. acting over

1.42 in2  and the new SCF was 2.08 as compared to a predicted

value of 2.03, which is a 2.4% error. Several other specimens

were checked which resulted in predictions of similar accuracy.

The actual stress state for the above example is 29,228 - 21,873

7355 psi. This is a significant influence on the fatigue life

calculation.
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SUMARY AND CONCLUSIONS

A two-dimensional plasticity stress-strain law has been

developed tc coordinate with the photoelastic measurements for

performing nonlinear, plastic analysis of stress distributions

around notches. These were compared to analytical solutions

obtained by slipline theory for perfectly plastic materials.

A one-dimensional model of the stress field at the notch-

tip has been used to successfully predict behavior there.

Predictions have been verified by experimental measurements

using photoelasticity.

The only remaining piece to be developed to have all the

theory in place for fatigue applications is the one for cal-

culation of residual stresses. All attempts at this so far

have been unsuccessful.
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